Neurovascular Coupling During Visual Stimulation in Multiple Sclerosis: A MEG-fMRI Study
نویسندگان
چکیده
The process of neurovascular coupling ensures that increases in neuronal activity are fed by increases in cerebral blood flow. Evidence suggests that neurovascular coupling may be impaired in Multiple Sclerosis (MS) due to a combination of brain hypoperfusion, altered cerebrovascular reactivity and oxygen metabolism, and altered levels of vasoactive compounds. Here, we tested the hypothesis that neurovascular coupling is impaired in MS. We characterized neurovascular coupling as the relationship between changes in neuronal oscillatory power within the gamma frequency band (30-80 Hz), as measured by magnetoencephalography (MEG), and associated hemodynamic changes (blood oxygenation level dependent, BOLD, and cerebral blood flow, CBF) as measured by functional MRI. We characterized these responses in the visual cortex in 13 MS patients and in 10 matched healthy controls using a reversing checkerboard stimulus at five visual contrasts. There were no significant group differences in visual acuity, P100 latencies, occipital gray matter (GM) volumes and baseline CBF. However, in the MS patients we found a significant reduction in peak gamma power, BOLD and CBF responses. There were no significant differences in neurovascular coupling between groups, in the visual cortex. Our results suggest that neuronal and vascular responses are altered in MS. Gamma power reduction could be an indicator of GM dysfunction, possibly mediated by GABAergic changes. Altered hemodynamic responses confirm previous reports of a vascular dysfunction in MS. Despite altered neuronal and vascular responses, neurovascular coupling appears to be preserved in MS, at least within the range of damage and disability studied here.
منابع مشابه
Origin of synchronized low-frequency blood oxygen level-dependent fluctuations in the primary visual cortex.
BACKGROUND AND PURPOSE Low-frequency (<0.08 Hz) fluctuations in spontaneous blood oxygen level-dependent (BOLD) signal intensity show synchronization across anatomically interconnected and functionally specific brain regions, suggesting a neural origin of fluctuations. To determine the mechanism by which high-frequency neural activity results in low-frequency BOLD fluctuations, I obtained measu...
متن کاملOn the Cross-Modal Relationship Between fMRI and EEG
Introduction Functional magnetic resonance imaging (fMRI) often uses the blood oxygen level dependent (BOLD) signal as a surrogate index of neural activity. The coupling between neural and BOLD signals is commonly modeled as a linear time-invariant system, which serves as an approximation for the complex interactions between neuronal activity, metabolic demand, blood flow and oxygenation. Howev...
متن کاملThe neural basis of the hemodynamic response nonlinearity in human primary visual cortex: Implications for neurovascular coupling mechanism.
It has been well recognized that the nonlinear hemodynamic responses of the blood oxygenation level-dependent (BOLD) functional MRI (fMRI) are important and ubiquitous in a series of experimental paradigms, especially for the event-related fMRI. Although this phenomenon has been intensively studied and it has been found that the post-capillary venous expansion is an intrinsically nonlinear mech...
متن کاملHuman brain mapping : Hemodynamic response and electrophysiology q
In view of the recent advance in functional neuroimaging, the current status of non-invasive techniques applied for human brain mapping was reviewed by integrating two principles: hemodynamic and electrophysiological, from the viewpoint of clinical neurophysiology. The currently available functional neuroimaging techniques based on hemodynamic principles are functional magnetic resonance imagin...
متن کاملThe absolute CBF response to activation is preserved during elevated perfusion: Implications for neurovascular coupling measures
Functional magnetic resonance imaging (fMRI) techniques in which the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) response to a neural stimulus are measured, can be used to estimate the fractional increase in the cerebral metabolic rate of oxygen consumption (CMRO2) that accompanies evoked neural activity. A measure of neurovascular coupling is obtained from the ratio ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience
دوره شماره
صفحات -
تاریخ انتشار 2018